
Reducing Software Security Risk Through an Integrated Approach

David P. Gilliam
Caltech, Jet Propulsion Laboratory

david.p. Gilliam@,ipl.nasa.nov

John C. Kelly
Caltech, Jet Propulsion Laboratory

john.c.kellvw@ivl.nasa.gov

Matt Bishop
University of California at Davis

bishop@cs. ucdavis. edu

Abstract

This paper discusses new joint work by the California
Institute of Technology’s Jet Propulsion Laboratory and
the University of California at Davis sponsored by the
National Aeronautics and Space Administration to
develop a security assessment instrument for the sojiware
development and maintenance life cycle. The assessment
instrument is a collection of tools and procedures to
support development of secure sojiware.

The toolset initially will have a Vulnerability Matrix
(VMatrix) with severity, flequency, platford application,
and signatureBela3 in a database keyed on the Computer
Vulnerability Enumeration (CVE) number. The toolset
also will include a property-based testing tool to slice
sojiware code looking for specific vulnerabilities using
signatures from the VMatrix. A third component of the
research underlying this toolset will be an investigation
into the verij&ation of sojiware designs for compliance to
security properties. This is based on model checking
approaches initially researched together with analytical
verijkation of formal specification.

Keywords

Security Toolset, Vulnerability Matrix, Property-Based
Testing, Model Specification Checking, Security
Verification

1. Introduction

Security vulnerabilities in software on networked
systems provide attackers an avenue to penetrate those
systems. The source of these security weaknesses are
usually traced to poor software development practices,
non-secure links between computing systems and
applications, and mis-configurations. An otherwise secure
system can be compromised easily if a system or
application software on it, or on a linked system, has
vulnerabilities.

Currently, there is a lack of security assessment tools
for use in the software development and maintenance life
cycle to mitigate these vulnerabilities. The National
Aeronautics and Space Administration (NASA) has
funded the Jet Propulsion Lab in conjunction with the
University of California at Davis (UC Davis) to begin
work on developing a software security assessment
instrument for use in the software development and
maintenance life cycle.

The goal of this work is to use a formal analytical
approach to integrate security into existing and emerging
techniques for developing high quality software and
computer systems. The approach will be multifaceted,
with activities and prototype tools in the following sub-
domains:
- Assessment instrument for reducing risk during

development, configuration, and installation of secure
systems

secure software architectures
- Models based development and verification for

mailto:john.c.kellvw@ivl.nasa.gov

- Security testing, and verification and validation
(V&V) techniques

Assessments of high profile NASA systems believed to
be vulnerable to attack will provide a metric to determine
the effectiveness of these activities and prototypes.

2. Securing the Computing Environment

The computing environment upon which this work is
based consists of multiple computer systems connected by
a network and running or supporting network-aware
applications. A vulnerability on any one of the systems
puts all the systems sharing the computing environment at
risk (due to the notion of the weakest link, or, more
formally, the principle of least common mechanism [A]).
It is imperative to secure the computing environment to
ensure NASA's computers, and hence missions and
research, function as expected. One key element of
securing the environment is knowledge of the systems, the
software running on them and their potential
vulnerabilities. Unfortunately, new exploits are being
discovered daily. Consequently, maintaining the security
of a computing environment is a constantly moving target
that consumes institutional resources.

Developers and maintainers of software need an
integrated approach to prevent security vulnerabilities
from being introduced during the software development
and maintenance life cycles. Much like preventing
application fault errors, preventing conditions that allow
the code to be exploited through race conditions, buffer
overflows and the like, requires an extendable and
modifiable toolset to assist developers to write code not
containing these problems.

As stated in the National Institute of Standards
Technology (NIST) handbook on computer security,
"Security, like other aspects of a computer system, is best
managed if planned throughout the computer system life
cycle.'' ([2], p. 74) This life cycle includes planning and
implementing software security. It is much less costly to
plan and implement software security fiom the beginning
of the development effort than to implement and add it
later. It also ensures that security is included in the
ongoing software life cycle development, including
maintenance, system upgrades and the design of new
modules. Life cycle management also helps document
security-relevant decisions, in addition to assuring
management that security is hlly considered in all phases.
Security management should begin early in the software
life cycle and continue throughout, including during the
maintenance and upgrade phases.

Our approach is to develop and implement a software
security assessment instrument that can be used in the
software development and maintenance life cycle to
reduce risk through an integrated approach.

The assessment instrument under current development
includes a Vulnerability Matrix (VMatrix), a property-
based testing tool, and model-based security specification
and verification mechanisms.

3. Vulnerability Matrix

The VMatrix is a dataset ranking severity of
vulnerabilities against fiequency of occurrence by
platform. The matrix suggests where to best expend effort
in minimizing security risks in the computing
environment.

Its purpose is twofold 1) to provide system
administrators metrics that show where best to expend
their efforts in protecting their computing environments;
and 2) to provide vulnerability specifications for the
property-based testing tool, enabling developers to test for
vulnerabilities in code during the software development
and maintenance life cycle.

The VMatrix will be stored in a SQL searchable
database so its users can search for particular
vulnerabilities and obtain different views of the data. The
database can also be searched by platform, application, or
vulnerability, so users can examine existing tools and
systems as they develop new ones, or bring on line entities
described in the database.

An effort to provide a unique identifier to each
vulnerability is currently underway, headed by MITRE
and the S A N S Institute. Numbered vulnerabilities are
stored in a Common Vulnerabilities and Exposures (CVE)
list. A number of companies selling security products use
the CVE numbers to identify vulnerabilities.

The VMatrix will use the CVE assigned identifiers as
the primary key in the database. The fields will include
the CVE identifier, vulnerability name, type, platform(s),
application, severity, fiequency, and vulnerability
signatures, as well as preconditions for the vulnerability to
arise. The vulnerability signatures will have multiple
subfields to break up the signature into specific
components. This allows the database to contain fine-
grained details of the attacks to exploit the vulnerability.

The signature fields will provide developers the ability
to import the signature@) into intrusion detection tools.
From those signatures, developers can derive low-level
specifications to give to the property-based testing tool.
This tool will use those specifications to test software for
specific vulnerabilities.

4. Property-Based Testing

The role of property-basedtesting is to bridge the gap
between formal verification and ad hoc verification. This
provides a basis for analyzing software without sacrificing

usefulness for rigor, yet capturing the essential ideas of
formal verification. It also allows a security mddel to
guide the testing for security problems.

Property-based testing [4] is a technique for testing that
programs meet given specifications. The tester gives the
specifications in a language that ties the specification to
particular segments of code. The specification has
assertions, which indicate changes in the security state of
the program, and properties, which describe a specific
security state (that, in this context, is considered secure).
The idea is to ensure that the properties always hold.

To simplify the testing procedure, the program is sliced
to delete those parts of the program unrelated to the
properties being tested. The result of the slicing is a
compilable program that satisfies the properties if, and
only if, the unsliced program satisfies the properties.

The sliced program is then modified to function as a
simple state machine by inserting code to emit information
about assertions and the need to check properties. A
monitor collects this information and updates the state of
the program. When a property statement is reached, the
monitor determines if the property holds. If not, the
monitor reports that the program failed to meet its
specification, and the tester can take appropriate action.

Figure 1

Figure 1 above graphically portrays how the procedure
works. The circle on the left represents an accurate
specification of the security model (which says what you
are, and are not, allowed to do). The goal is to analyze the
software to determine the level of assurance, or belief that
the program does what it is supposed to do. The arrow
going from the left to the right shows that the security
property specifications, written in a low-level
specification language called TASPEC, represent the
requirements of the security model. The arrow goes to the
property box on the right to emphasize that the properties
we test for are taken directly from the security properties
of the model. It is expected, and must be tested, that the
code will honor these properties.

Next, the program is sliced, or the smallest program
equivalent to the original with respect to the stated
properties is derived. Then the program is instrumented

and tested, as described earlier. The testing either
validates the properties or shows they do not hold. This
helps determine the level of assurance of the program, as
captured by the arrow going from the right to the left.

As an example, consider Fink's implementation of
property-based testing. He defined a language called
TASPEC that expressed specifications in terms of C code
(which was the environment in which his tool was to be
used). This differs from more familiar specification
languages such as Z [B], which work at a more abstract
level. For example, consider the high-level requirement
(stated in English) that "a user must authenticate himself
or herself before acquiring privileges." The low-level
specification (again in English) for a UNIX program
written in C would be:

Is password corrrect? {
Compare user's password hash to hash stored

If match, set UID to user's uid
If no match, set UID to ERROR

for that user name

1
if privileges granted {

compare UID to the uid for which privileges

if match, all is well
if no match, specification violated

are granted

1
Translating this into TASPEC gives [3]:

location func setuid(uid) result 1
{ assert privileges-acquired(uid); }

location func crypt(password,salt) result encryptpwd
{ assert password-entered(encryptpw4; }

location func getpwnam(name) result pwent
{ assert userqassword(name,

location func strcmp(s1, s2) result 0
{ assert equals(s2, s2); }

password-entered(pwd1) and
userqassword(name,pwd2, uid) and

equal(pwd1, pwd2)
{ assert authenticated(ui4 ; }

pwent->pwqasswd, pwent->pw-uid); }

authenticated(uid) before privileges-acquired(uid)
The set of statements with assert in their associated

blocks are the set of TASPEC statements that indicate
changes of state. From the top, they say that when the
program makes a setuid system call with an argument of
uid, the process acquires the privileges of that uid; when
the process calls the UNIX function crypt, the result is a
hashed password; when the process calls the getpwnam
function, it gets back information about the user, her
(hashed) password, and UID; and the UNIX function

strcmp, when called, compares two strings and returns 0 if
they are equal. Code is added to the named functions so
that, for example, when setuid is called, the assertion
privileges-acquired(ui4 is added to the current security
state. When all of password-entered(pwdI),
userqassword(name, pwd2, uid), and equal(Pwd1, pwd2)
are in the state, the monitor will add authenticated(ui4 to
the state.

The last line says that when the assertion setuid(uid) is
added to the state, the property that authenticated(uid) is
already in the state, for the same uid, must hold; in other
words, if authenticated(ui4 is not in the current security
state, the monitor will raise a warning that a property has
not been satisfied.

This example shows how property-based testing can
take advantage of the specifications of vulnerabilities in
VMatrix to detect problems. The key is to represent the
vulnerability in the low-level specification language. That
explains the subfields in the matrix; they must capture the
essence of the problem. As a side benefit, this work feeds
directly into the Davis model for vulnerabilities [C],
because the assertions are the preconditions of that model.

A second advantage of the properties being stored in
VMatrix is that they form the core of a library that can be
used for testing the security of programs other than those
in the NASA suite. In essence, we extend the notion of
software reuse to properties and assertions [Dl.

We will apply the property-based testing tool to the
NASA environment. Hence, the prototype property-based
testing tool will be written for C++ and the UNIX
environment. Success will be determined by performing
static analysis of several programs of interest. Flaws not
known to those performing the testing will be injected into
the program to provide a baseline of measurement. Once
this is completed, we will develop and prototype an
engine to perform testing on programs in a production
type environment.

At this point we will examine the use of a run-time
testing tool similar to the static property-based testing tool
(the difference being the omission of slicing).We will
determine how much its use degrades performance, and
how much extra overhead the testing adds to the system in
general. We will also perform “fiiendly” penetration
attacks on the relevant software, and determine if the run-
time testing environment detects these attacks .

The property-based software tool, Tester’s Assistant-
Next Generation (TANG), will benefit users by giving
them increased confidence in the programs‘ correctness
with respect to the stated (security) specifications. If non-
security properties (such as safety) are of interest, the
testers will have access to TANG to perform similar
testing for their own set of properties. But the focus of this
study is on security-related properties.

5. Model-Based Security Specification and
Verifkation

Analyses based on models can be used to verify and
check compliance to desired security properties. Many
security properties cannot be verified by test activity
alone, however verification through analyses and
modeling at the design stage can increase the confidence
that the specification provides a sound base for
developing a secure program or communication protocol.
The analysis and modeling process can begin early in the
software development life cycle and provides a machine-
readable model, which can be probed through various
tools. Analyses and models should be updated
periodically, as requirements and designs become more
mature. Analyses and models can contribute to the
verification by testing programming code through
consistent collaboration of test logs.

Software model checkers automatically explore all
paths fiom a start state in a computational tree. The
computational tree will contain repeated copies of
subtrees. The objective is to verify models over as many
scenarios as feasible. Since the models are selective
representation of functional capabilities under analysis,
the number of feasible scenarios are much larger than the
set that can be checked during testing. Model Checker
differ fiom traditional formal techniques by the following
characteristics:

Model checkers are operational as opposed to

Model checkers provide error traces
0 Their goal is oriented toward fmd errors as opposed

deductive

to proving correctness (since complete state space
exploration is usually infeasible)

Model based securitv mecification and verification:
Model checking addresses issues in security protocols

by examining a large number of ways to circumvent the
security mechanism. In contrast to purely analytic
methods, model checking is capable of examining the
larger venue by validation of the over-all-security system
in local, regional, or global environments. These methods
have more leverage since they model real world scenarios,
and they embrace more than just the mathematics of the
protocol. For example, the Needham-Schroder protocol
(1978) was proven secure using the BAN logic for
protocol specification. However, Lowe (1998) and Wu
(1998) using the model checking system SPIN, have
discovered successful attacks abrogating the effectiveness
and usefulness of this protocol. We propose to extend this
approach to protocol validation by (1) proposing models
of security protocol systems, and (2) validating those
configurations. These modeling techniques have

developed around a multi-agent programming paradigm
that has emerged as a convenient fiamework around which
internet applications can be successfully validated
Mitzoguchi(1998).

Consider two concurrent processes PI and P2 depicted
by the following state machine diagrams (example
adapted from Callahan*)

Process P 1 Process P2

Figure 2

A partial state transition diagram for the joint process
machine would be:

...

Processors P1, P2
Figure 3

Model checkers effectively and automatically explore a
large number of paths from a start state in a computational
tree. In Figure 4 below we have diagramed the paths of
the model checking. Note we have not listed in the tree
any state that was reached in a prior level. The
computational tree will contain repeated (perhaps
infinitely many times) copies of subtrees. We’ve
arbitrarily chosen state (A,D) as the start state for this
computational tree.

Figure 4

Considered together, the joint process machine has
nine states (the Cartesian product of the state space for PI
with the state space for P2):

(A,D) @,Dl (C,D)
(A,E) @,E) (C,E)
(“9 (B,F) (C,F)
State Space for Joint Process Machine*
(* Examples is from a presentation by J. Cdlahan entitled Automated
Testing via Model Checking, West Virginia University, 1997)

Figure 5

Three common properties to check for are:
Invariant - always p

p is a property the model must always have
Safetv - not ever q

q is a property the model must never have
Liveness - r implies s will be “true” now or in the future

, always the case that if property r holds at the
current state, then property s will hold at some
state now or in the future
used to guarantee that significant sequences take
place

~:
Architectures that support change and facilitate

maintenance are essential to secure systems. However,
these architectures are inadequately tested by traditional
verification techniques. Model Checking offers ways to
begin modeling and investigating the behavior of the
planned system, and to validate that key properties hold
invariantly in the system as modeled. This technique will
be explored in collaboration with security vulnerabilities
and property based testing as part of this study.

6. Conclusion

The three parts of this work form a coherent
technique to examine new and existing systems for
security flaws. The vulnerability matrix drives the
selection of security properties that the Tester’s Assistant
- Next Generation will look for. The matrix contains the
problems of greatest concern to NASA at the moment.
Model checking will ref ie the selection of properties by
moving their selection fiom an ad hoc technique to an
analytic technique based upon the needs of the systems.
So, the Vulnerability Matrix and model-pased checking
provide the properties that the software must meet; the
property-based tester checks that the programs do indeed
meet these properties.

This project suggests several other area in which
hitful research may

*

be conducted.
* The model-checking methodology requires a

secure model to check against. Developing
such models is an open research issue.

* Property-based testing requires properties
expressed in TASPEC to test against. The
vulnerability matrix forms the beginning of a
library of TASPEC properties. How to develop
other properties worth adding to a library of
properties is another open research issue.

* Training in the writing of more secure programs
flows directly from the library of security
properties and the system-specific models.
Placing these in the context of a particular
language and environment is an important part
of improving the quality of software and systems.

Porting the toolset to alternate environments (such as
Windows 2000) and languages (such as scripting
languages and Java) requires revisiting the models used
to develop the tools as well as the models of systems.

7. Acknowledgements

The research described in this paper is being carried
out by the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National
Aeronautics and Space Administration.

The research described in this paper is also being
carried out by the University of California at Davis under
a subcontract with the Jet Propulsion Laboratory,
California Institute of Technology.

8. References

[11 M. Burrows, M. Adbadi, and R. Needham. A Logic of
Authentication. Technical Report 39, DEC Systems
Research Center, February 1989.

[2] "An Introduction to Computer Security: The NIST
Handbook," National Institute of Standards and
Technology Administration, U.S. Department of
Commerce, 1995.

[3] G. Fink, M. Bishop, "Property Based Testing: A New
Approach to Testing for Assurance," ACMSZGSOFT
Software Engineering Notes 22(4) (July 1997).

[4] G. Lowe. Breaking and Fixing the Needham-
Schroeder Public Key Protocol Using CSP and FDR. In
TACAS96,1996.

[5] F. Mizoguchi, H. Ohwada, H. Nishiyana, and H.
Hirasishi. An Integrated Agent Architecture for Smart
Office Robot Collaboration. Technical report, Information
Media Center, Science University of Tokyo, 1998

[6] "Panel I: Issues in Requirements Definition for
Survivable Systems," Chair: R. C. Linger, Proceedings of
the 3rd International Conference on Requirements
Engineering (ICRE '98), Apr, 1998, Colorado Springs,
CO, pp. 198-199.

[7] A.B. Smith, C.D. Jones, and E.F. Roberts, "Article
Title", Journal, Publisher, Location, Date, pp. 1 - 10.

[8] W. Wen and F Mizoguchi. Model checking Security
Protocols: A Case Study Using SPIN, IMC Technical
Report, November, 1998.

[A] J. Saltzer and M. Schroeder, "The Protection of
Information in Computer Systems," Proceedings of the
ZEEE 63(9) (1975) pp. 1278-1308.

[B] A. Diller, Z: An Introduction to Formal Methoh,
John Wiley and Sons, New York, NY (1990).

[C] M. Bishop, "Vulnerabilities Analysis," Proceedings of
the Recent Advances in Intrusion Detection (Sep. 1999).

[Dl J. Dodson, "Specification and Classification of
Generic Security Flaws for the Tester's Assistant
Library," M.S. Thesis, Department of Computer Science,
University of California at Davis, Davis CA (June 1996).

